Closing Thu:
15.5

Closing Tue:
Taylor Notes 1, 2, 3
Closing Next Thu:
Taylor Notes 4, 5
Final is Saturday, March 12
5:00-7:50pm
KANE 130
Eight pages of questions, covers everything.

Taylor Notes 1 (TN 1): Tangent Line Error

Bounds

Goal: Approximate functions with tangent lines and get error bounds. And begin a process of better and better approximations.

Def'n: We say the first Taylor polynomial for $\mathbf{f}(\mathbf{x})$ based at \mathbf{b} (or the tangent line approximation) is

$$
T_{1}(x)=f(b)+f^{\prime}(b)(x-b)
$$

(This is just the tangent line to $f(x)$ at $x=b$.)

Warm up: Before we discuss error bounds, let's talk about bounds and inequalities.
An upper bound, M , for a function is something that is always bigger than that function.

Examples: Find an upper bound for the functions below on the given intervals:

1. $|\sin (5 x)|$ on $[0,2 \pi]$
2. $|\sin (x)+\cos (x)|$ on $[0,2 \pi]$
3. $|x-3|$ on $[1,5]$
4. $\left|\cos (2 x)+\mathrm{e}^{-2 \mathrm{x}}+\frac{6}{x}\right|$ on $[1,4]$

Tangent Linear Error Bound Theorem

($1^{\text {st }}$ case of Taylor's Inequality)
If $\left|f^{\prime \prime}(x)\right| \leq M$ for all x values between a and b, then, for all x values between a and b, we have ERROR $=\left|f(x)-T_{1}(x)\right| \leq \frac{M}{2}|x-b|^{2}$.
Note:
$\mathrm{M}=$ some upper bound on $\mathrm{f}^{\prime \prime}(\mathrm{x})$
$|x-b|=$ the distance that x is away from b .

Proof sketch for $x>b$ (for your own interest): Start with $f(x)-f(b)=\int_{b}^{x} f^{\prime}(t) d t$.

Do integration by parts in a clever way ($\left.u=f^{\prime}(t), d v=d t, d u=f^{\prime \prime}(t), v=t-x\right)$ to get $f(x)-f(b)$

$$
=f^{\prime}(b)(x-b)-\int_{b}^{x}(t-x) f^{\prime \prime}(t) d t
$$

Rearrange to get

$$
\begin{gathered}
f(x)-f(b)-f^{\prime}(b)(x-b) \\
=\int_{b}^{x}(x-t) f^{\prime \prime}(t) d t
\end{gathered}
$$

so
ERROR: $\left|f(x)-T_{1}(x)\right|=\left|\int_{b}^{x}(x-t) f^{\prime \prime}(t) d t\right|$
Then note

$$
\begin{aligned}
\left|\int_{b}^{x}(x-t) f^{\prime \prime}(t) d t\right| & \leq \int_{b}^{x}(x-t)\left|f^{\prime \prime}(t)\right| d t \\
& \leq M \int_{b}^{x}(x-t) d t \\
& =\frac{M}{2}(x-b)^{2}
\end{aligned}
$$

To use the Tangent Line Error Bound:

1. Find $f^{\prime \prime}(t)$.
2. Find upper bound for $\left|f^{\prime \prime}(t)\right|$ on the interval. Call this M.
3. Use the theorem.
4. And plug in $\mathrm{x}=$ "an endpoint" to get a single number for a worst case upper bound.

Two types of error bound questions in the current homework:
A) Given interval, find error bound.
B) Given error bound, find interval.

Example:

Let $\mathrm{f}(\mathrm{x})=\ln (\mathrm{x})$.

1. Find the $1^{\text {st }}$ Taylor polynomial based at $\mathrm{b}=1$.
2. Find a bound on the error over the interval

$$
J=[1 / 2,3 / 2]
$$

3. Find an interval around $b=1$ where the error is less than 0.01 .

Closing Tue:
Closing Next Thu:
Taylor Notes 1, 2, 3
Closing Next Thu: Taylor Notes 4,5
Final is Saturday, March 12
5:00-7:50pm
KANE 130
Eight pages of questions, covers everything.
Entry Task: Let $\mathrm{f}(\mathrm{x})=\mathrm{x}^{1 / 3}$ and $\mathrm{b}=8$.

1. Find the $1^{\text {st }}$ Taylor Polynomial for $f(x)$ based at b.
2. Use Taylor's inequality to give a bound on the error over the interval $\mathrm{J}=[7,9]$.

Finishing Example From Last Time:
Let $f(x)=\ln (x)$ and $b=1$.

Last time we found
$1^{\text {st }}$ Taylor Polynomial:
$f(1)=0, f^{\prime}(x)=1 / x, f^{\prime}(1)=1$, so
$T_{1}(x)=0+1(x-1)=x-1$
Error Bound on J = [1/2,3/2]:
Step 1: $\left|f^{\prime \prime}(x)\right|=\left|-\frac{1}{x^{2}}\right|=\frac{1}{x^{2}} \leq M=$??
Step 2: Error $\leq \frac{M}{2}|x-1|^{2} \leq$??

Now, find an interval about $b=1$ where the error is less than 0.01.
(TN 2 and 3): Higher Order Approximations
The $\mathbf{2}^{\text {nd }}$ Taylor Polynomial (or quadratic approximation) is given by

$$
T_{2}(x)=f(b)+f^{\prime}(b)(x-b)+\frac{1}{2} f^{\prime \prime}(b)(x-b)^{2}
$$

and the quadratic error bound states:
If $\left|\mathrm{f}^{\prime \prime \prime}(\mathrm{x})\right| \leq \mathrm{M}$ for all x values between a and b, then, for all x values between a and b, we have

$$
\text { ERROR }=\left|f(x)-T_{2}(x)\right| \leq \frac{M}{6}|x-b|^{3} .
$$

Example:

Find the second Taylor polynomial for $f(x)=x^{1 / 3}$ based at $b=8$ AND find the error bound on the interval $\mathrm{J}=[7,9]$.

Taylor Approximation Idea:
If two functions have all the same derivative values, then they are the same function (up to a constant).

Let's compare derivatives of $f(x)$ and $T_{2}(x)$.
$T_{2}(x)=f(b)+f^{\prime}(b)(x-b)+\frac{1}{2} f^{\prime \prime}(b)(x-b)^{2}$
$T_{2}^{\prime}(x)=f^{\prime}(b)+\frac{1}{2} f^{\prime \prime}(b) 2(x-b)$
$T_{2}^{\prime \prime}(x)=f^{\prime \prime}(b)$
$T_{2}^{\prime \prime \prime}(x)=0$

Now plug in $\mathbf{x}=\mathbf{b}$ to each of these, we see that, at $x=b, f(x)$ and $T_{2}(x)$ have:

1. The same values: $f(b)=T_{2}(b)$.
2. Same $1^{\text {st }}$ deriv: $\quad f^{\prime}(b)=T_{2}{ }^{\prime}(b)$.
3. Same $2^{\text {nd }}$ deriv: $\quad f^{\prime \prime}(b)=T_{2}^{\prime \prime}(b)$.

But after that they are no longer equal.

Questions:

Why did we need a $1 / 2$?

What would $T_{3}(x)$ look like?

In general, Taylor polynomial of degree \mathbf{n} :

$$
\begin{aligned}
T_{n}(x) & =f(b)+f^{\prime}(b)(x-b)+\frac{1}{2} f^{\prime \prime}(b)(x-b)^{2} \\
& +\frac{1}{3!} f^{\prime \prime \prime}(b)(x-b)^{3}+\cdots+\frac{1}{n!} f^{(n)}(b)(x-b)^{n}
\end{aligned}
$$

We can write this in a cleaner way using signma notation:

$$
T_{n}(x)=\sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(b)(x-b)^{k}
$$

And we have Taylor's Inequality (error bound):
If $\left|f^{(n+1)}(\mathrm{x})\right| \leq \mathrm{M}$ for all x between a and b, then, for all x values between a and b, we have ERROR $=\left|f(x)-T_{n}(x)\right| \leq \frac{M}{(n+1)!}|x-b|^{n+1}$.

Note: For a fixed constant, a, the expression $\frac{a^{k}}{k!}$ goes to zero as k goes to infinity. So the expression $\frac{1}{(n+1)!}|x-b|^{n+1}$, will always go to zero as n gets bigger. Which means that the error goes to zero (unless something unusual is happening with M ; we will see examples).

